Molecular characterization of volume-sensitive SK(Ca) channels in human liver cell lines.

نویسندگان

  • Richard Roman
  • Andrew P Feranchak
  • Marlyn Troetsch
  • Jeffrey C Dunkelberg
  • Gordon Kilic
  • Thorsten Schlenker
  • Jerome Schaack
  • J Gregory Fitz
چکیده

In human liver, Ca(2+)-dependent changes in membrane K(+) permeability play a central role in coordinating functional interactions between membrane transport, metabolism, and cell volume. On the basis of the observation that K(+) conductance is partially sensitive to the bee venom toxin apamin, we aimed to assess whether small-conductance Ca(2+)-sensitive K(+) (SK(Ca)) channels are expressed endogenously and contribute to volume-sensitive K(+) efflux and cell volume regulation. We isolated a full-length 2,140-bp cDNA (hSK2) highly homologous to rat brain rSK2 cDNA, including the putative apamin-sensitive pore domain, from a human liver cDNA library. Identical cDNAs were isolated from primary human hepatocytes, human HuH-7 hepatoma cells, and human Mz-ChA-1 cholangiocarcinoma cells. Transduction of Chinese hamster ovary cells with a recombinant adenovirus encoding the hSK2-green fluorescent protein fusion construct resulted in expression of functional apamin-sensitive K(+) channels. In Mz-ChA-1 cells, hypotonic (15% less sodium glutamate) exposure increased K(+) current density (1.9 +/- 0.2 to 37.5 +/- 7.1 pA/pF; P < 0.001). Apamin (10-100 nM) inhibited K(+) current activation and cell volume recovery from swelling. Apamin-sensitive SK(Ca) channels are functionally expressed in liver and biliary epithelia and likely contribute to volume-sensitive changes in membrane K(+) permeability. Accordingly, the hSK2 protein is a potential target for pharmacological modulation of liver transport and metabolism through effects on membrane K(+) permeability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYTOTOXIC ACTIVITY OF THYMUS VULGARIS, ACHILLEA MILLEFOLIUM AND THUJA ORIENTALIS ON DIFFERENT GROWING CELL LINES

The cytotoxic activity of ethanolic extracts of Thymus vulgaris, Thuja orientalis and Achillea millefolium was investigated on various growing tumor cell lines. MTT colorimetric assay was used for measuring the inhibition of cell proliferation. All of the three extracts showed a relatively dose-dependent inhibition of proliferation of human breast cancer (SK-Br-3, MDA-MB-435) and leukemia ...

متن کامل

Cloning and Expression of A Small Conductance Ca-Activated K Channel from The Mouse Cochlea: Coexpression with α9/α10 Acetylcholine Receptors

Functional interactions between ligand-gated, voltageand Ca-activated ion channels are essential to the properties of excitable cells and thus to the working of the nervous system. The outer hair cells in the mammalian cochlea receive efferent inputs from the brainstem through cholinergic nerve fibers that form synapses at their base. The acetylcholine released from these efferent fibers activa...

متن کامل

IK channels are involved in the regulatory volume decrease in human epithelial cells.

Parallel activation of Ca(2+)-dependent K(+) channels and volume-sensitive Cl(-) channels is known to be responsible for KCl efflux during regulatory volume decrease (RVD) in human epithelial Intestine 407 cells. The present study was performed to identify the K(+) channel type. RT-PCR demonstrated mRNA expression of Ca(2+)-activated, intermediate conductance K(+) (IK), but not small conductanc...

متن کامل

Effect of crude Venom of Odonthobuthus doriae scorpion in cell culture using ion channel modulators

Scorpion venom toxicity is one of the major medical concerns from old years, due to its influence on human activities and health. From many years ago a lot of researches established to examine different aspects of venom toxicity and its effects on different organs. During these years researchers are doing more specific studies on the cytotoxicity of scorpion venom. In Iran, Odonthobuthus doriae...

متن کامل

Ca2+-activated K+ Channels in Murine Endothelial Cells: Block by Intracellular Calcium and Magnesium

The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002